Distância entre ponto e reta

Ponto e reta
Ponto e reta
PUBLICIDADE

A geometria analítica utiliza as relações algébricas para explicar e entender os conceitos de Euclides. Dessa forma, um ponto, uma reta, uma elipse, podem ter suas características estudadas através de princípios algébricos. Vamos realizar o estudo analítico da distância entre um ponto e uma reta no plano cartesiano.

Considere um ponto P(xo, yo) e uma reta s de equação s: ax + by + c = 0.

 

Existem várias distâncias entre o ponto P e a reta s, assim como existem vários caminhos até um destino. Mas para nós interessa somente a menor distância.

A distância entre P e t é dada pela fórmula:

Onde, a, b e c são os coeficientes da equação da reta s e xo e yo são as coordenadas do ponto P.

Exemplo 1. Calcule a distância entre o ponto P(0, 10) e a reta s: x – y + 1 = 0.

Solução: Da equação geral da reta s, obtemos: a = 1, b = – 1 e c = 1.

Segue que:

Exemplo 2. Determine a que distância está o ponto A(– 2, 3) da reta t: 4x + 3y – 2 = 0.

Solução: Da equação da reta t, obtemos: a = 4, b = 3 e c = – 2.

Segue que:


Exemplo 3. A distância do ponto P(1. Y) até a reta s: x + y = 0 é de √2/2. Determine o valor de y.

Solução: Da equação da reta s, obtemos: a = 1, b = 1 e c = 0.

Segue que:

Portanto, o ponto P pode ter coordenadas (1, 0) ou (1, – 2)


Por Marcelo Rigonatto
DESTAQUES
Confira os destaques abaixo

..................................................

Gráfico de Setores
Como um gráfico de setores deve ser feito? Confira mais!

..................................................

Verbo Pôr
Retire todas suas dúvidas em relação a esse verbo. Clique!

..................................................