Alunos Online


Termoquímica no Enem

Preparamos para você dicas valiosas sobre Termoquímica no Enem que enfocam fórmulas, interpretações e situações possíveis de serem cobradas no exame.

Um tema de química muito recorrente no Enem é Termoquímica. Para facilitar e enriquecer o seu estudo, elaboramos dicas sobre cálculos que envolvem essa área de estudo. Vamos lá?

1ª Dica: Unidades de medida utilizadas na Termoquímica

A Termoquímica é um ramo da Físico-química que estuda a quantidade de energia (na forma de calor) liberada ou absorvida em uma reação química. As unidades utilizadas para as medidas de calor são:

  • calorias (cal) ou quilocalorias (Kcal), sendo 1 Kcal = 1000 cal;

  • Joules (J) ou quilojoules (KJ), sendo 1KJ = 1000 KJ.

*1 cal = 4,18 J

2ª Dica: Fórmulas utilizadas em Termoquímica

a) Para calcular a variação da entalpia de uma reação:

ΔH = Hp – Hr

  • ΔH: variação da entalpia

  • Hp: entalpia dos produtos

  • Hr: entalpia dos reagentes

Essa fórmula é utilizada quando o exercício fornece os valores das entalpias dos participantes (reagentes e produtos) da reação. Por exemplo:

Sabendo que as entalpias de formação das moléculas X2, Y2 e XY são, respectivamente, -68,3 Kcal, -40 Kcal e -92,37 Kcal, determine o valor do ΔH dessa reação química.

1X2 + 1Y2 → 2XY

1o Passo: Determinar a entalpia nos reagentes. Para isso, somamos os resultados da multiplicação do coeficiente estequiométrico do reagente pela sua entalpia:

Hr = 1.(-68,3) + 1.(-40)

Hr = - 68,3 -40

Hr = - 108,3 Kcal Kcal

2o Passo: Determinar a entalpia nos produtos. Para isso, somamos os resultados da multiplicação do coeficiente estequiométrico do produto pela sua entalpia:

Hp = 2.(-92,37)

Hp = - 184,74 Kcal

3o Passo: Calcular a variação da entalpia com a seguinte fórmula:

ΔH = Hp - Hr

ΔH = - 184,74 + (- 108,3)

ΔH = - 184,74 - 108,3

ΔH = - 293,04 Kcal

b) Para calcular a variação da entalpia em uma questão sobre lei de Hess:

ΔH = ΔH1 + ΔH2 + ΔH3 + ...

ΔH1: variação da entalpia da 1a reação

ΔH2: variação da entalpia da 2a reação

ΔH3: variação da entalpia da 3a reação

Essa fórmula é utilizada quando a questão fornece a variação da entalpia de cada uma das reações envolvidas no processo químico.

Exemplo: Dadas as equações e seus respectivos valores de entalpias:

1Cgrafita + 1 O2 → 1 CO2 ΔH = -94,1 Kcal/mol

1 CO2 → 1 Cdiamante + 1 O2 ΔH = -94,1 Kcal/mol ΔH = 94,5 Kcal/mol

Determine a variação da entalpia do processo abaixo:

1Cgrafita → 1 Cdiamante

Para determinar o valor da entalpia da equação acima, basta somamos os valores das variações de entalpia fornecidos:

ΔH = ΔH1 + ΔH2

ΔH = -94,1 + 94,5

ΔH = 0,4 Kcal

OBS.: Foi realizada a soma direta dos valores dos ΔH fornecidos porque os itens (O2 e CO2) que se repetem nas equações não aparecem na equação final e estão em lados opostos da seta.

c) Para calcular a variação da entalpia em um exercício sobre energia de ligação:

ΔH = Hr + Hp

Essa fórmula é utilizada quando a questão fornece os valores das energias de ligação de cada um dos átomos envolvidos no processo químico.

OBS.: As energias de ligação nos reagentes sempre são trabalhadas com valores positivos, enquanto as dos produtos apresentam valores negativos.

Exemplo: Sabendo que as energias de ligação nas moléculas H2, F2 e HF são, respectivamente, -104,2 Kcal, -36,6 Kcal e -134,6 Kcal, determine o valor do ΔH dessa reação química.

1H2 + 1F2 → 2HF

1o Passo: Determinar a energia das ligações presentes nos reagentes. Para isso, somamos os resultados da multiplicação do número de vezes que a ligação aparece na fórmula das substâncias dos reagentes. Nunca esqueça que o coeficiente estequiométrico da equação deve multiplicar sempre o valor da energia da ligação.

Hr = 1.1.(104,2) + 1.1.(36,6)

Hr = 104, 2 + 36,6

Hr = 140,8 Kcal

2o Passo: Determinar a energia das ligações presentes nos produtos. Para isso, somamos os resultados da multiplicação do número de vezes que a ligação aparece na fórmula das substâncias do produto:

Não pare agora... Tem mais depois da publicidade ;)

Hp = 1.2.(-134,6)

Hp = 2. (-134,6)

Hp = - 269,2 Kcal

3o Passo: Calcular a variação da entalpia na fórmula referente à energia de ligação:

ΔH = Hr + Hp

ΔH = 140,8 + (- 269,2)

ΔH = 140,8 - 269,2

ΔH = - 128,4 Kcal

d) Para calcular a variação da entropia de uma reação

ΔS = Sp – Sr

  • ΔS: variação da entalpia

  • Sp: entropia dos produtos

  • Sr: entalpia dos reagentes

Essa fórmula é utilizada quando a questão fornece os valores das entropias dos participantes (reagentes e produtos) da reação.

Exemplo: Sabendo que as entalpias de formação das moléculas H2, Cl2 e HCl são, respectivamente, 130,67 Kcal, 223,09 Kcal e 186,8 Kcal, determine o valor do ΔH dessa reação química.

1H2 + 1Cl2 → 2 HY

1o Passo: Determinar a entropia nos reagentes somando os resultados da multiplicação do coeficiente estequiométrico do reagente pela sua entalpia:

Hr = 1.(130,67) + 1.(223,09)

Hr = - 68,3 -40

Hr = 353,76Kcal Kcal

2o Passo: Determinar a entropia no produto somando os resultados da multiplicação do coeficiente estequiométrico do produto pela sua entalpia:

Hp = 2.(186,8)

Hp = 373.6 Kcal

3o Passo: Calcular a variação da entalpia com a seguinte fórmula:

ΔH = Hp - Hr

ΔH = - 184,74 + (- 108,3)

ΔH = - 184,74 - 108,3

ΔH = - 293,04 Kcal

e) Para calcular a variação da energia livre de Gibbs

ΔG = ΔH – ΔS.T

  • ΔG: variação da energia livre de Gibbs

  • T: temperatura da reação

Essa fórmula é utilizada quando a questão fornece os valores da variação da entropia, variação da entalpia e a temperatura.

Exemplo: Determine a variação da energia livre de Gibbss do processo químico representado abaixo. Saiba que ela foi realizada a 25 oC e que os valores das variações de entalpia e entropia são, respectivamente, -19 Kcal/mol e 18 cal/mol.

1o Passo: transformar o valor da entalpia de cal para Kcal. Para isso, basta dividirmos por 1000:

ΔH = 100. 18

ΔH = 1800 Kcal/0mol

2o Passo: Transformar a temperatura fornecida em Celsius para Kelvin. Para isso, bastar somar o valor com 273:

T = 25 + 273

T = 298 K

3o Passo: Calcular o ΔH

ΔG = ΔH – ΔS.T

ΔG = 1800– 18.298

ΔG = 3564

3ª Dica: Interpretação de resultado de cálculos na Termoquímica

  • Para ΔH > 0, reação é endotérmica;

  • Para ΔH< 0, reação é exotérmica;

  • Para ΔS > 0, reação tende a não ser espontânea;

  • Para ΔS < 0, reação tende a ser espontânea;

  • Para ΔG > 0, reação não é espontânea;

  • Para ΔG < 0, reação é espontânea.

4ª Dica: Relação entre massa molar e variação de entalpia

Muitas questões sobre Termoquímica relacionam a quantidade de energia absorvida ou liberada na reação com a massa molar de alguma substância presente no processo.

Quando isso ocorre, a questão fornece a quantidade de energia (liberada ou absorvida) em cal ou Kcal/mol ou em J ou KJ/mol, bem como a massa utilizada de uma substância qualquer.

Exemplo: Determine a quantidade de calor liberada na queima de 10 gramas de uma vela (C20H42). Saiba que se trata de uma reação cujo ΔH é igual a – 13300 KJ/mol.

1o Passo: Calcular a massa molar (M1, em g/mol) da vela. Para isso, multiplicamos a quantidade de átomos do elemento pela sua massa molar e, depois, somamos os resultados:

M1 = 20.12 + 42.1

M1 = 240 + 42

M1 = 282 g/mol

2o Passo: Montar uma regra de três. Na primeira linha, utilizamos a energia fornecida (13300 KJ/mol) e a massa calculada (282 g/mol); na segunda linha, utilizamos a massa fornecida (10 gramas):

282 gramas …......... - 13300KJ

10 gramas …......... x

282.x = 10. (- 13300)

282.x = - 133000

x = - 133000
      282

x = - 471,63 KJ/mol





Aproveite para conferir nossa videoaula sobre o assunto:

Com as nossas dicas, estudar Química se tornará mais fácil

Com as nossas dicas, estudar Química se tornará mais fácil

Por: Diogo Lopes Dias

Artigos Relacionados